Verifiable Delegation of Computation on Outsourced Data

Dario Fiore
IMDEA Software Institute
Madrid, Spain
Cloud Computing

Benefits

- **Pay-per-use**
 - No need to maintain expensive infrastructures

- **Easy Access**
 - From multiple clients
 - Wherever you are
Cloud Computing

Benefits
- Pay-per-use
 - No need to maintain expensive infrastructures
- Easy Access
 - From multiple clients
 - Wherever you are

Expensive computation

How about Security?
Security Issues in Cloud Computing

- **Integrity**
 - What if data is tampered with?
 - Are the results correct?
 - Can we verify that the Cloud operates correctly?

- **Privacy**
 - What if data is sensitive? credit cards, medical records, etc.
 - Can we prevent the Cloud from learning the data?

- Malicious Cloud?
 - External attacks
 - Coercion by governments
A Motivating Example

The company might rely on (untrusted) **Cloud Services** ...

...but wants some guarantees (privacy, integrity, ...)

- Data **too large** for being stored on small devices
Delegating Computations on Outsourced Data

Goals

- **Integrity**
 Untrusted cloud must **not** be able to send incorrect y

- **Efficiency**
 Client’s communication, storage and computation must be **minimized**

- **Open-endedness**
 Client shall continuously outsource its data

- **Program-independence**
 Client shall **not need to fix** P in the outsourcing stage

Why challenging?

Client does not know the inputs v_1,\ldots,v_k

(most noticeable difference to verifiable computation)

$y = P(v_1,\ldots,v_k)$

"Compute P"

y

Is y correct?
A First Attempt to Solve the Problem

Goals

- **Integrity**
 Untrusted cloud must **not** be able to send incorrect y

- **Efficiency**
 Client’s communication, storage and computation must be minimized

- **Open-endedness**
 Client shall continuously outsource its data

- **Program-independence**
 Client shall **not** need to fix P in the outsourcing stage

Solution: homomorphic MACs

$y = P(v_1, v_2, \ldots, v_k)$

Is y correct?
Our solution: Homomorphic MACs

 Goals

- **Integrity**
 Untrusted cloud must not be able to send incorrect y

- **Efficiency**
 Client’s communication, storage and computation must be minimized

- **Open-endedness**
 Client shall continuously outsource its data

- **Independence**
 Client shall not need to fix P in the outsourcing stage

Diagram

- v_1, v_2, \ldots, v_n are inputs to the cloud server.
- The cloud server computes $y = P(v_1, \ldots, v_k)$.
- The client verifies if y is correct.

“Compute P“
- v_1, v_2, \ldots, v_k are inputs to the client.
- The client checks for the correctness of y.

Is y correct?
Our solution: Homomorphic MACs

Goals

- **Integrity**
 - Untrusted cloud must not be able to send incorrect y.
 - Cloud cannot forge signatures.

- **Efficiency**
 - Client’s communication, storage, and computation should be minimized.

- **Open-endedness**
 - Client shall continuously outsource its data.

- **Independence**
 - Client shall not need to fix P in the outsourcing stage.
The model: Labeled Programs [GW12, CF13]

- Problem: what does correctness mean?
- Each value \(v \) is authenticated wrt a multi-label \(L = (\Delta, \tau) \)
 - Idea: uniquely “remember” the outsourced data

Correct output means

“\(P \) executed on valid values with labels \(\Delta, \tau_1, \ldots, \tau_n \)”

= authenticated by the company

- Each program variable gets a name: a label \(\tau \)
- E.g., \(P \) computes the yearly average stock price for any company, for any year, etc.
The model: Labeled Programs

Idea: evaluate program P on different data sets $\Delta_1, \Delta_2, \Delta_3, \ldots$

> reuse programs
Realization of Hom. MACs

Values $v_i \in \mathbb{Z}_p$

Computations expressed by arithmetic circuits

$P : \mathbb{Z}_p^n \rightarrow \mathbb{Z}_p$
Our Realization [BFR13]

- Homomorphic MACs \textit{w/efficient verification} for
 - values \(v_i \in \mathbb{Z}_p \)
 - computations expressible by \textit{degree–2 arithmetic circuits} over \(\mathbb{Z}_p \)

\textbf{Applications}

- \textbf{Statistical functions}: counting, summation, (weighted) average, arithmetic mean, standard deviation, variance, covariance, least–squares, various correlation errors.
- \textbf{Similarity distance} (euclidean distance/Pearson error) between vectors/populations
Basic ingredients

- Polynomial algebra
- Pseudorandom functions PRF
 - \(\text{PRF}_K : \{0,1\}^* \rightarrow \mathbb{Z}_p \)
 - Without knowing \(K \), \(r = \text{PRF}_K(x) \) looks like sampling a random \(r \leftarrow \mathbb{Z}_p \)
How to create a MAC?
Encode value v_i (an integer) with multi-label L_i as a random polynomial σ_i of degree 1.

The data owner stores a key K of a pseudo-random function PRF_K and a secret line α.

How to verify a MAC?
Check the “guard” point, i.e., recompute $\text{PRF}(L_i)$ and evaluate σ_i on 0 and α.
Practical Homomorphic MACs (ctd)

How to evaluate a program P?

- Point-wise execution of arithmetic operations
 \[\sigma^* = P(\sigma_1, \ldots, \sigma_k) \]

 - **Addition** → addition of coefficients
 - **Multiplication** → convolution of polynomials

How to verify a result σ^*?

Compute $P(\text{PRF}(L_1), \ldots, \text{PRF}(L_k))$ and compare to $\sigma^*(\alpha)$

Observations:

- $\sigma^*(0) = P(\sigma_1(0), \ldots, \sigma_k(0))$ = $P(v_1, \ldots, v_k)$
- $\sigma^*(\alpha) = P(\sigma_1(\alpha), \ldots, \sigma_k(\alpha))$ = $P(\text{PRF}(L_1), \ldots, \text{PRF}(L_k))$

- **integrity**
- **communication**: succinct tags
- **verification time**: $O(P)$
Amortized Closed-Form Efficient PRFs

[BFR’13]

How to evaluate a program P?

- Point-wise execution of arithmetic operations
 \[\sigma^* = P(\sigma_1, \ldots, \sigma_k) \]
 - Addition \rightarrow addition of coefficients
 - Multiplication \rightarrow convolution of polynomials

- Observations:
 \[\sigma^*(0) = P(\sigma_1(0), \ldots, \sigma_k(0)) = P(v_1, \ldots, v_k) \]
 \[\sigma^*(\alpha) = P(\sigma_1(\alpha), \ldots, \sigma_k(\alpha)) = P(\text{PRF}(L_1), \ldots, \text{PRF}(L_k)) \]

How to verify a result σ^*?

Compute $P(\text{PRF}(L_1), \ldots, \text{PRF}(L_k))$ and compare to $\sigma^*(\alpha)$

- **✓** integrity
- **✓** communication: succinct tags
- **✗** verification time: $O(P)$

[CF13]
Amortized Closed-Form Efficient PRFs

[BFRR’13]

How to verify a result σ^*?
Compute $P(\text{PRF}(L_1), \ldots, \text{PRF}(L_k))$
and compare to $\sigma^*(a)$

\Rightarrow Need efficient way to evaluate P on PRF values

\[P(\text{PRF}(\Delta, \tau_1), \ldots, \text{PRF}(\Delta, \tau_k)) \]

\[P(g^{au_1+bv_1}, \ldots, g^{au_k+bv_k}) \]

isom. of g for arithmetic operations

\[g \ P(au_1+bv_1, \ldots, au_k+bv_k) \]

re-arrange

\[g \ P^*(a,b) \]

\[\text{PRF}_K(\Delta, \tau_i) = g^{au+bv} \]

where $(a,b) = F_{K_2}(\Delta) \in \mathbb{Z}_p^2$
and $(u,v) = F_{K_1}(\tau_i) \in \mathbb{Z}_p^2$
and g generates a bilinear group G

based on the Decision Linear Assumption (DLin)

offline: precompute P^* independent from Δ
online: evaluate P^* on different Δ
Amortized
Closed-Form Efficient PRFs

[BFR’13]

How to verify a result σ^*?
Compute $P(\text{PRF}(L_1), \ldots, \text{PRF}(L_k))$
and compare to $\sigma^*(\alpha)$

→ Need efficient way to evaluate P on PRF values

$P(\text{PRF}(\Delta, \tau_1), \ldots, \text{PRF}(\Delta, \tau_k))$

from k to 2

$g P'(a, b)$

$O(P)$
precomputation of P'

$O(1)$
$P(\text{PRF}(\Delta, \tau_1), \ldots, \text{PRF}(\Delta, \tau_k))$

✓ integrity
✓ communication: succinct tags
✓ amortized verification time: $O(1)$
Homomorphic MACs w/ Eff. Ver.

How to verify a result σ^*?
Compute $P(\text{PRF}(L_1), \ldots, \text{PRF}(L_k))$
and compare to $\sigma^*(a)$

→ Need efficient way to evaluate P on PRF values

$P(\text{PRF}(\Delta, \tau_1), \ldots, \text{PRF}(\Delta, \tau_k))$

from k to 2

Observation: our PRF maps to \mathbb{G}_1.
But, CF’13 MACs are encoded in \mathbb{Z}_p.

→ We re-encode CF’13 into \mathbb{G}_1.

✓ integrity
✓ communication: succinct tags
✓ amortized verification time: $O(1)$
Our Contribution: EVH–MAC

<table>
<thead>
<tr>
<th>MAC encoding</th>
<th>Computations</th>
<th>Verification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hom–MAC [CF13] Eurocrypt’13</td>
<td>ring (\mathbb{Z}_p)</td>
<td>circuits of poly–bounded degree</td>
</tr>
</tbody>
</table>

Statistical functions: counting, summation, (weighted) average, arithmetic mean, standard deviation, variance, covariance, least–squares, various correlation errors.

Similarity distance (euclidean/Pearson error) between vectors/populations
Performances: EVH–MAC

<table>
<thead>
<tr>
<th>Client operations</th>
<th>Time</th>
<th>Size of tags</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data outsourcing</td>
<td>1.3 ms</td>
<td>0.2 kB</td>
</tr>
<tr>
<td>Verification</td>
<td>8.8 ms</td>
<td>0.6 kB</td>
</tr>
</tbody>
</table>

Samples taken on a standard laptop, 2.5 GHz Intel i5, with 128 bits of security using the PBC library.

Server overhead (non-optimized, 128 bits): constant factor ($\sim 10^5$)

In 2007 (for non-interactive verifiable computation): server
Summary

- **Verifiable computation** over outsourced data
 - outsource your data
 - execute many functions
 - verify w/o having the inputs
 - in time independent of the input!
- Realization via **homomorphic MACs**
 - for degree-2 circuits (many important functions)
 - **first** construction with **efficient verification**
 (constant time, independent of input size)
Adding privacy

- Cloud does not learn the outsourced data: integrate with homomorphic encryption. Verifiable queries on encrypted DBs
- Verifiers (e.g. external auditors) do not learn the inputs: study notions of zero-knowledge proofs in this context

Challenges

- More expressive computations
- Reducing server’s overhead (for a significant speed-up we need different encodings)

- Not only about Cloud... (verifying computations as a tool for more applications)
Thanks!

Based on joint work with

D. Catalano [Eurocrypt’13]
M. Backes [ACM CCS’13]
R. Gennaro and V. Pastro [submitted]

Questions?