• 2017cover Actualidad
  • 1
Jueves, 12 Abril 2018 10:32

Máquinas ‘inteligentes’ reconocen la actividad humana a partir de una videograbación

Esta tecnología, diseñada por científicos de la URJC, mejora las capacidades de distinguir gestos de la mano y acciones como sentarse, saltar o aplaudir.

Irene Vega

El sistema desarrollado permite reconocer de manera automática actividades humanas y gestos de la mano, como atrapar, en imágenes grabadas con cámaras de profundidad. Los resultados obtenidos, publicados en la revista científica Pattern Recognition, son un paso más para conseguir que las máquinas entiendan mejor el comportamiento humano. “Las grabaciones, realizadas con cámaras tipo Kinect de Microsoft, nos proporcionan información 3D de la posición de las articulaciones de nuestro esqueleto”, explica Juan Carlos Nuñez, uno de los autores del estudio.

Esta nueva tecnología puede encontrar múltiples aplicaciones en el la detección de actividades sospechosas en los sistemas automáticos de videovigilancia, en el etiquetado de la actividad que realiza un atleta en un evento deportivo o en el reconocimiento de la acción que está realizando una persona en un videojuego.  

Este trabajo forma parte de una línea de investigación en la que colaboran científicos de los grupos GAVAB (Grupo de Algoritmia aplicada a la Visión Artificial y Biometría) y CAPO (Computación de Altas Prestaciones y Optimización) de la URJC. Los avances logrados superan en algunos casos métodos ya existentes, alcanzando tasas de éxito que se aproximan al 100%. “Hemos realizado experimentos sobre las principales bases de prueba disponibles públicamente, como MSR Action3D, o UTKinect-Action3D, obteniendo un 95,7 y un 99% de acierto, respectivamente”, señala Juan Carlos Nuñez. 

Modelos matemáticos para emular redes neuronales 

Las herramientas empleadas para el diseño de esta nueva tecnología se basan en el uso de redes de neuronas artificiales. Estos sistemas consisten en modelos matemáticos que simulan algunos comportamientos de las redes neuronales biológicas como, por ejemplo, su capacidad de aprendizaje. 

Según Juan Carlos Nuñez, “con los recientes avances en las técnicas de aprendizaje sobre redes neuronales artificiales, se ha conseguido crear redes profundas, que constan de muchas capas de neuronas apiladas. Además, por su gran capacidad de aprendizaje, están siendo aplicadas con mucho éxito a multitud de problemas que clásicamente se consideraban difíciles, como reconocer objetos en fotografías o reconocer el habla”.

El trabajo realizado por los investigadores de la URJC también presenta una nueva estrategia de aumentado de datos, que les ha permitido extender el limitado número de ejemplos disponibles para el proceso de aprendizaje de la red. “Esta estrategia ha sido fundamental, debido a que las redes neuronales profundas requieren de una gran cantidad de ejemplos para aprender”, explican los autores de artículo.

Este estudio forma parte de la tesis doctoral de Juan Carlos Nuñez, dirigida por Raúl Cabido, miembro del grupo CAPO y José Vélez, miembro del grupo GAVAB. Además han participado los profesores Antonio Sanz y Juan José Pantrigo. El estudio se enmarca en varios proyectos, dentro de las convocatorias del Plan Nacional de I+D+i, y cuenta con financiación del programa para la excelencia en la investigación del Banco Santander y la URJC para el grupo Computer Vision and Image Processing (CVIP).